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THE GEORGE WASHINGTON UNIVERSITY

School of Engineering and Applied Science
Institute for Management Science and Engineering

CONVERGENCE THEORY FOR UNCONSTRAINED
MINIMIZATION

by

Garth P. McCormick

1. Introduction

Convergence theory for unconstrained minimization centers around

proving which characteristics hold at points of accumulation of "mini-

mizing sequences" generated by unconstrained minimization algorithms.

First order convergence refers to proofs that accumulation roints are

stationary points. Second order convergence is concerned with the addi-

tional property that the Hessian matrix at a point of accumulation sat-

isfies the second order necessary condition, namely, that the Hessian

matrix there be positive semidefinite. To a great extent cowvergence

proofs for particular algorithms have many common elements. in this

paper these results have been synthesized and put in a general context.

Applications are given in Section 5.

2. Step-size Procedures

For the unconstrained minimization problem

min f(x)

s.t. x L H C En  (here H is an open set),

a general algorithm usually takes the following form.
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At iteration k , given xk CH , construct a directed

curve Yk(t) parameterized by the single variable t

The cure should have the two properties that Yk(O) =

xk , and for t positive and small flyk(t) ]  f(xk )

Use some suitable step size procedure to obtain a value

tk and set

xk+1 = Yk(tk)

Most of the time, yk(t) = Xk +skt where sk  is an

n x I direction of search.

Below are the five step size procedures which will be used at

different times thlroughout this paper. First, definitions are required.

A vector sk  is a nonascent direction at xk if

sTVf(xk) < 0

A vector dk  is a direction of nonpositive curvatuPe at xk if

dTV2 f(xk)dk< 0

A vecto" s k  is a descent direction at xk if

sTVf(xk) < 0

A vector dk  is a direct ion of negat it, curvaturC at xk f

dV 2f(xk)dk < 0.

The first three step size procedures are called optima7 step size

procedures and refer to the following problem: given a point xk H , a

given open set, and given a direction sk , solve

minimize fixk + Skt]
t >0

(1)

subject to the restriction that

t c It >0 Xk+ skt H

-2
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FIRST LOCAL MINIMIZER (SSP 1):

Set tk to be the firsrt local minimizer for (1).

GLOBAL MINIMIZER (SSP II):

Set tk  to be a global minimizer for (I).

LOCAL MINIMIZER WITH SMALLER FUNCTION VALUE (SSP II1):

Set tk to be any local minimizer for (1) with the additional

property that

fixk + Sktk] < f(xk)

There are several difficulties associated with the use of SSP I -

SSP Ill. In the first place, a solution may not exist; i.e., any infi-

mum may be taken on at a point tk where xk + Skik is on the boundary

of H . Any algorithm which uses these step size procedures is required

to ascertain that a solution exists. (If it does, it is obviously un-

constrained.) Second, even if solutions to SSP I and SSP 1I are known

to exist, there is no guarantee usually that the desired t can be

found when the function f(x) is a general not-necessarily-convex func-

Lion. A method for solving SSP I and SSP 11 is described in IMcCormick,

19791.

When, for fixed xk,sk the function fixk + Skt is convex in

t , all three of the first step size procedures reduce to the same prob-

lem.

Most of the published convergence theorems for algorithms solving

the unconstralied optimization problem rely on either SSP I or SSP 11.

Th, guaranteed ability to solve SSP III has not proved a strong enough

tool for proving these theorems.

A third difficulty which has concerned algorithmists in recent

years is that these step size procedures are Idealized in that It is

-3
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usually impossible to find a local minimizer c'xa(ct.. Convergence

proofs and rate of convergence proofs relying on exact mini imi z.A Ition are

thus suspect. Some effort has been put forward in stating weaker re-

quirements on the three optimal step size procedures. This amounts es-

sentially to deciding how far from exact minimization one can come and

still prove the desired theorems. The reader is referred to [Polak,

19711, [Cohen, 1972], and [McCormick and Ritter, 1974] for more on this

subject.

When f(x) is strictly convex, it is easy to show that the tk

specified by the optimal step size procedures is the same and that an

algorithm can be specified to guarantee finding the value (if it

exists). For methods of conjugate directions, the optimal step size

procedure is necessary in accelerating the rate at which the algorithm

converges to the global minimizer. Many unconstrained minimization al-

gorithms (e.g., Newton's method, and some quasi-Newton methods) do not de-

pend upon optimal step size procedures for their rate of convergence prop-

erties. For these it is possible to use step size procedures of a type

introduced by [Armijo, 19661. Some generalizations of his approach are

described below. As before, assume that x H , a given open set. Let

sk9d k be directions, where sk  is one of nonascent and dk  is one of

nonascent and also nonpositive curvature. Let O < 1 be i prv-

assigned constant.

FIRST ORDER ARMIJO (SSP IV):

= i~k)
Set tk 2 , where i(k) is the smallest integer from

Ik

i=O,.L,... such that

xk + Sk2- -H,

and

flXk+sk2-i - f(xk) ,2-isTVf(xk)

In order for a finite value of i satisfying tie inequality to

exist, it is sufficient that ak he a direction of descent. When

-4-
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certain conditions on the sequence {s } are met, it is possible to
k

prove that points of accumulation of the sequence {x k  are stationary
kr

points. When variations of Newton's method are used which involve a

direction of nonpositive curvature, it is possible to prove convergence

(see [McCormick 1977] and Theorem 4) to a second order point when the

following step size procedure is used.

SECOND ORDER ARMIJO (SSP V):

Set t = 2
- i(k) , where ik) is the smallest integer from

i=O,1,... such that

-i S-i -i/2Yk(2') = xk +s2 + d2 H
kk k k

and
f[Yk(2-')] - f(xk) . e[s Vfxk + V2f

In order for a finite value i(k) to exist, it is sufficient that

sk9dk be nonascent directions and in addition, that skVf(xk) < 0

whenever Vf(x k ) # 0 , and

dTV2 f(xk)dk < 0

whenever Vf(xk) = 0

3. First Order Convergence

Thearom Z. Consider any algorithm for minimizing the continuous-

ly differentiable function f(x) in the open set H which has the fol-

lowing properties: the algorithm is a nonascent algorithm, i.e.,

f(xl) < f(xk) for all k ; consecutive points are of the form x
k+l k Xk+l=

xk + Sktk where sTVf(xk) < 0 ; and tk is found by solving the step-

size problem SSP I. Let xE H be a point of accumulation of {xk I and

K1 a set of indices such that limkEK xk a x . Assume that IfSk1 I < M

for all kcK1 . Let s be any point of accumulation of {sk} for

-5-
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k t: K Then

-Ts Vf (X) - 0

Proof: Let K2 CK be a set of indices such that s =

limkK2 sk . if s = 0 , the theorem is obviously true. Assume other-

wise.

Case (i). There exists a set of indices K C K such that
3- 2

limkEK3 tk = 0 . Because the optimal step size problem generates tk

0 = Vf(xk + sktk)T s k

Taking the limit (by assumption each IlskII is uniformly bounded above

and tk -> 0)

0 = Vf(x)T s

Case (ii). Here, liminf t = t > 0 . Let K C K be a
kEK k 4- 2

2
set of indices such that tk > Z/2 for all ke K4  Assume the con-

trary of the theorem conclusion, i.e., Vf(x) s < -6 < 0 . Then there

is a neighborhood N(x) about x and a set of indices K5 C_ K4 such

T
that for x t- N(x) and kE K5 , Vf(x) s < -6/2 < 0

Let t > 0 be a scalar small enough such that for all 0 < t <

t ,all k - K5  ,

Xk + Skt c N(x)

Pick t* = min(L/2, ) . Then

-6-
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f(x)- f(x = f(X < [f(xk+l)-f(xk) (the nonas-

k=O kEK5 cent prop-
erty)

If(xk +skt*) - f(xk)] (because of the step- (2)

kcK size procedure)

= ) Vf(xk +s k)T s t* (Taylor's Theorem with 0<T<t*)
kcK 5

r X -(6/2)t* =

kc:K
5

This contradiction shows the truth of the theorem for Case (ii).

'heorem 2 [Convergence of SSP II]: Consider the same hypotheses

and statements as in Theorem 1 except that the step size procedure SSP

II is used. Then the same conclusions hold.

L'Yoof: Nothing in the proof of Theorem 1 changes except it is

noted that Inequality (2) follows when SSP II is used because tk is

chosen as a global minimizer in H of f(x) along the vector sk  ema-

nating from xk

Comment: Unfortunately, the same proof cannot be used for SSP

IT- . It is theoretically possible that if tk is chosen to be any lo-

cal minimum jalbeit with value less than f(xk) , Inequality (2) may

not be valid.

Under similar assumptions, convergence to a stationary point can

be shown if the Armijo step size procedure SSP IV is used.

Theorem 3: Suppose SSP IV is used as the step size procedure.

Let xtH be a point of accumulation of {xk I and K a set of indi-

ces such that xk x for k K1  Assume that fC , that there

exists a value B>0 such that

-7-
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II>f C511f'oyl[' (3)

for all kt.K, that f'(x k)s k 0 for each k ,that the sequence

{s k is uniformly bounded (kc~ K ) , and that

iimsup kEK If'(x k)sk / 11f'(xk01I 11sk'1  - < 0 .(4)

Then
f'(X) = 0

IIr )' : There are two cases to consider.

Case (i). The set of indices { i(k)} for kr K Iis uniformly

bounded above (by a number 1). Because the sequence I f(x k)I} is mono-

tonec decreasing and each f'(x k)s k < 0 , it follows by summing appro-

priately that

f(x) - f(x ) <c x2 -ik f'(x k)s k (x2 -ik f'( k)s
k=0 1c

Further, it follows from (3), (4), and the assumed uniform bound on

1(k) that

2- 1(k) f'(x k)s k < -cj62' If (X k)112

for each ke K1  It follows directly, then, that f'(xk) 0 for

k. K1 , and by the continuity of f'(x) that f'(X) =0

Case (ii). There is a subset of indices K 2 K Isuch that

lim kLK 21(k) = -. If the cause for termination of iteration k were

that x k + s -ik+ H infinitely often, then since 1(k) -~'for

kr-K 29and because the (s k are uniformly bounded, it follows that x

is on the boundary of H . Since H is an open set, x l H , a contra-

diction to the theorem assumption. Thus, without loss of generality,

assume for all k -. K2
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f (xkSk2  +i + o(HlSkII2~~k ) =

= f(xk+S 2 i(k)+ - f(xk) > x2 - i ( k )  f'(xk)sk

Transposing, using (4) and dividing by I[skl 2 -i(k,+1 yieldsj

o(IlSkn2i(k)+l) / 2-i(k)+lIsk > (n'-l)f'(xk)sk / 1*Sk

(1-) I If' (Xk)l1

Because the ts I are uniformly bounded, taking the limit as k k
for k c K2 yields the desired result.

4. Second Order Convergence

Some algorithms are concerned with producing accumulation points

which have in addition to the stationarity property the property that

their Hessian matrices are positive semidefinite. So far only algo-

rithms which compute explicit second derivative information have been

modified to produce this kind of convergence. It is theoretically pos-

sible that by using a finite difference approximation technique, similar

convergence results could be obtained.

Algorithms which produce second order convergence must check the

Hessian matrix at each iteration. If it is indefinite, a nonascent di-

rection of nonpositive curvature must be computed as well as a nonascent

direction. A convenient step size rule to use, then, is SSP V.

If the vector sk forms a sufficiently small angle with the

negative gradient vector, and if the direction of nonpositive curvature

acts sufficiently like an eigenvector associated with the minimum eigen-

value, then an interesting convergence theorem can be proved.

-9-
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'Pq:,'vm 4 (Second Order Convergence of SSP V IMcCormick 19791):
C2

Assume that f C in II . Suppose that in minimizing f in H an

algorithm with the descent property uses SSP V an infinite number of

t imes. IThe vont prjo,),qt is simply that f(k+l < f(xk) for all
k( l k

k .J Let K be the infinite set of indices for which SSP V is used,

and let x denote a point of accumulation in H of Ix } for kc K1k1

Let K 2  K1 be a set of indices such that limkcK xk = x . Some reg-

ularity properties on the sequences tsk } and {dk } are required to

hold. There exists a value > 0 such that

[> 3f'(xk)1j , for all kcK2  (5)

There is a value 6>0 such that

f '(X k) S
limsup = -S < o (6)kr -T

2 Y(xk)T TVT =

Thcre is a value y -0 such that

F f" d i T fxkemin

Lk (X )d C I(x)e , for all kt K? (7)

where e k is an eigenvector of f"(xk) associated with its minimum

eigenvalue. The sequences {s k I and {d are uniformly bounded.

Then: x is a stationary point, i.e.,

f'(x) = 0
and

f"(x)

is a positive semidefinite matrix with at least one eigenvalue equal to

zero.

fPi-oof: There are two cases to consider.

Case (i). The integers 1i(k)) for k in K.) are uniformly

bounded above by some value I . Because of the descent property, it

10



fol lows that all points of aCCUL ulat ion have thlie same funct ion value,

andj

f(x) - 1(x0) = ' -(X.Nl)- ' f(X1'+) - f(x )

S -i'(ki ['(Xk)s +' Uf(x 1d.V

2 1o ( I d iV2- + 'U C
K k 2 /kk ~ ~ .

Si nec I (:) is finitc, anod since each term in bra,-Lets is less than or

equal to zero [or each k; K2, , it follows that I' x) 0 , and that

T I(.) C 0 , where- V is some acculImu liation point of I Vi
-1:1 I11 i ll . m ill k

lor k K.,

ca.e (ii). [hre is a subset K C K,2 such that

I im, i(k) = Because of the definition of i(k) , then either

vk (-i(k)+l)
., (211

or
f( Y( 2  k i k - (xk) > x2- i( k )+1 f' (xk)S + . d f"(xk)dk1 (8)

If the former condition held infinitely often, then because

(k)+ x , also (k t K3) it follows that % is on the boundary

of II . Since II is an open set, x I t , a contradiction to the the-

orem hypothesis. Therefore, without loss of generality, (8) can be con-

Sidered to hold for all k! K3
9I

IeV'Mtse f C 2 and because the sequences is k  and {d k } are

assumed to be uniformly bounded. the left-hand side of t ih inequality

(8) 'an be writton

- 11 -
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f'(x ksk-i(k)+l + f'(x )d 2-Li(k)-I]/2

+ (jkSk2.- + d2i(k)1/2] f11(X) 2 1(k)+I + dk2[i(k)11/]

+ o(2- i (k)+ l )

Combining like terms and incorporating where appropriate into

o(2- i (k)+1) yields Jusing the fact that f'(xk)dk < 0 ,

o(2- i(k)+l) > (-1) [f'(xk)s + - dif (x)d]2
- i (k)+l

> 01) 1 '(X)S 11 + e mi Tf"(Xke in1]-idk+

iny2-ik)+

jusing (5), (6), and (7)]. Dividing by 2 -i(k)+ l , taking the limit as

k ->- (for kL K3 ) yields, by the argument in Case (i), the desired

result.

A different strategy for minimizing a function whose Hessian is

not always positive definite is to compute a direction of nonpositive or

negative curvature and optimize in that direction. The theorem below is

ustuful for proving convergence of algorithms using this strategy.

Throrem 5: Assume as in Theorem 1, and in addition assume that

f(x) is twice continuously differentiable in H . Then in addition to

the conclusion of Theorem I,

-T 2-
s V f(x)s > 0

/'ro,: Let K C K be a set of indices such that s =

limkK2 sk . If s-0 the theorem is obviously true. Assume otherwise.

2

Case (i). There exists a set of indices K3 C K2 such that

lim t = 0 Because the optimal step size procedure generates tk
k-K k k3

-12-
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skVkf(xk+sktk)sk I

.ikinlg the I hi I vi l Is I 1)&,' ',;ir d r'.il I .0,1 so j .

Caste (ii). He re I iminif t t 0 . Let K 2 bt a
k-K 2k4

set of indices such that t. /2 for all k, K4  Assume t he con-

trary of t he theorem vonc I us ion, i*e, t hat s f(x) = - U hen

there is a ne ighborhood N(x) about x and ;I set o! indie. e K C_ K

such that for x I N(x) , and k t K5  L2 X)Sk V2 o

let - 0 be a scalar small enough such thiat for all .1) t,

aLL k E K5

xk + skt N(x)

Pick t* = min(t/2 , t) Then

f(x) f(x 0) if(X k+ - f(xk)I ' ) If(XkH - f(sk)l (tihe nM- ti
k=O k.K 5  asce:lt

propert

) I f(x + skt*) - f(xk) ]  (because of t hi step s i ,
kt K pro dur

kt+ '1' 2 f 4 sk ).1 2 UY (Tavlo
K5 theorem with

SSkV2f(xk+ Sk 1)sk(t*)"/2 (fact thit s kf(xk)kt-K5

52

-. ) -(/2)(t*) /2
ki K5

This contradiction proves the theorem for Case (ii).

- 13 -
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5. ARLpjications

Tihe well-known method of steepest descent chooses as the direc-

tion of search each iteration the negative gradien vector, i.e., s =

-Vt (x) . hat points ol accumulation generatcd oV this method

are stationary points follows directly from Theorem 1. The conclusion

is that Vf(x) - 0 , whico means that I.t(x)L 2 = 0.

it is easy to cite other applications of these theorems to prove

convergence of algorithms. They essentialiv shift the burden of proof

to that of showing that the hypotheses of Lilt' theo:ems are as satisfied.

in many cases this is difficult. The application "o he pursued here is

the modili ed Newton method. This type of algorithm (see JMcCormick

197h ttr a survey of these methods) is one which modifies the classical

Newton procedure whin it poiat is encountered where the Hessian matrix 's

not positive definite. i t. modification considered here is one which

usks 11 opt imal steps at each iteration. It is not recommended since

it is comptilatiolally prohioitive but is considered to illustrate the

applicat ion of the general theorems.

't . k k = F E t(x ) b#' an eigenvalue-eigenvector reduction

of the Hessian matrix at xk , i.e., Ek(E ) = I , and \ is a diago-
kk k

k k =

general, for tie jth step of the kt;. iteration, liad k by solving, .1+1

the step size problem (either SSI' I or SSI' I )

(k k
minimize f(y e.t)

t'0 1

k k
subject to t - it I k # vi

J .I

k k
The sign is chosen so that ' ek Is a nonascent. direction at yk

-14-
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This is to be done for j-l,...,n The last point generated is

taken to be xk+l

Thvor'em 6: Assume that f(x) is twice continuously differen-

tiable in the open set H . Suppose that the algorithm just described

is applied to the unconstrained minimization of f in H . Assume that

there is a single point of accumulation (call it x ) generated by the

algorithm. Then f'(x) - 0 , and V 2f(x) is a positive semidefinite

matrix.

Rrcof': Let E be a matrix of accumulation of Ek with columns

{e } . It follows from Theorem 1 (2) that f'(x)el = 0 . Since by as-

lksumption {y.} has the single point of accumulation x , from Theorem I

(2), f'(x)e = 0 also. Inductively it is trivial to show that

f'(x)e. = 0 , for j=l ...,n . Since .he e.'s are linearly indepen-
J J

dent, it must be the case that f'(x) - 0

-T2 - 0- o ~ ,..

Similar reasoning shows that eTV f(x)e. > 0 , for j=l,...,n

2-
and thus that V f(x) is a positive semidefinite matrix. Q.E.D.

Practical modified Newton algorithms for minimizing unconstrained

functions differ in their strategies when faced with an indefinite Hes-

sian, and in their computation of the estimates of the "positive part"

of the Hessian and directions of nonpositive curvature. The theorems

presented herein should be a help in proving convergence of such algo-

rithms by isolating the components of the proof which are independent 3f

the linear algebra used to generate the necessary quantities.

-15 -



T- 4' 1

REFERENCES

ARIJO, I.. (1966). Minimization of functions having Lipschitz continu-

ous first partial derivatives. Pacifc JournaL !,f Mat16.mat.K'c, 16,

(1), 1-3.

COHEN, A. (1972). Rate of convergence of several --onjugate gradient a -

gorithms. 1Aj'W S. N:mrical A? l., 9, 248-259.

McCORMICK, C. P. (1976). Strategies for tie minimization of an uncon-

strained nonconvex function. Technical Paper Serial T-343, Insti-

tute for Management Science and Engineering, rhe George Washington

University (November).

McCORMICK, C. P. (1977). A modification of Armijo's step-size rule for

negative curvature. A th. ProgrL=aLn:,n, 13, (1), 111-115.

McCORNICK, G. P. (1979). Finding the global minimum of a function of

one variable using the method of constant signed higher order

derivatives. Technical Paper Serial T-411, Institute for Manage-

ment Science and Engineering, The George Washington 11;niversity

(November).

McCORMICK, G. P. and K. RITTER (1974). Alternate proofs of the con-

vergence properties of the conjugate gradient method. S. t:-

mizt2,:n TAcuy anci A;' I., 13, (5), 497-518.

POIAK, E. (1971). 'omrutLt inal Mct'ho d, :i ! I . ci,: ',,: A 't< .;,

A;; r, uacrl. Academic Press, New York.

- 16-


